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NECKING OF AN ANISOTROPIC PLASTIC MATERIAL
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Abstract—The two conditions for stable necking, treated as a bifurcation of stress path, are
derived. The anisotropic material considered is one for which the plastic work increment = Gdé,
where both the generalized yield stress & and generalized plastic strain increment dé are invariant
functions. The method is applied to the necking of a thin cylinder under internal pressure.

The problem of necking of a ductile strain-hardening material may be approached in two
ways: In the first,[1], the possibility of a bifurcation of the strain and stress paths is con-
sidered; in the second,[2], we consider the possibility of a bifurcation of the stress path.
The former requires consideration of a kinematically admissible velocity field in a post-
necking mode of deformation ; the method is not simple to apply and few exact solutions are
available. The latter method requires only the consideration of a statically admissible stress
increment field for material instantaneously in the pre-necking mode. The method may be
more restricted in application, but is simpler. It will be one purpose of the present paper to
attempt a more fundamental justification of the stress-path bifurcation technique than is
presently available.

A previous attempt to consider the necking of anisotropic material[3] has assumed the
validity of Hill’s theoretical description of strain hardening[4]. However recent work[5]
suggests that the definition of generalised plastic strain € requires modification, but that it
may be replaced by one which is both invariant with respect to rotation of the coordinate
axes of reference and satisfies the work condition.

o;jde;; =Gde >0 (D

where o;; is the stress field tensor, de;; the associated plastic strain increment tensor field
and ¢ the generalised yield stress. In what follows elastic strains will be assumed to be neglig-
ible.

Consider the deformation of a volume V, enclosed by the surface 4. Let F; be the com-
ponents of surface tractions on 4 and o;; the stress tensor field satisfying the equations of
equilibrium in ¥ and the stress boundary conditions on 4. Let de;; be the kinematically
admissible plastic strain increment tensor field associated with the o;; through the con-
stitutive equation for the material. We suppose that, in the interval considered, the surface
A is subjected to surface tractions dF; prescribed by the loading conditions on a part A of
A, and by displacement conditions on the remaining part A4,. In addition there may exist
inadvertent disturbing forces dF° on Ap. Let do; be the stress increment field in equilibrium
with (dF; + dF®) on A, satisfying stress equilibrium in V, and associated with the de;;
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through the current rate of strain hardening. Then, for an initially quasi-static deformation
the equation of virtual work may be written

AWP = (dE — dW) + dK V)

where dWP, and dW are the work increments done by the dFP and the dF, respectively,
dK = 0 the increase in kinetic energy and

1
dE = fyda,- jde;dV. 3)

From equation (2) it may be seen that all the work dW? will be converted to kinetic
energy if (dE — dW) < 0, no matter how small the dW>. Conversely, if (dE — dW) > 0, the
work done by disturbing forces will be converted to kinetic energy only if the dW? is suffic-
iently large. A necessary condition for stability is therefore

(dE - dW) > 0. (4a)

Further, if dE < 0, all the work done by prescribed external forces dF; will be converted to
kinetic energy and the deformation is unstable. That is, for stable quasi-static deformation

we must have
dE > 0. (4b)

The smallest possible rate of energy of dissipation dE satisfying both inequalities (4)
corresponds to dW < 0. From equation (1), since both dE and dK are non-negative then,
if dW? is negligibly small, dW is non-negative. Hence the least possible admissible rate of
energy dissipation satisfying both inequalities (4) corresponds to

dw = L(dFi du)dA =0 5)

where du, is the actual displacement field vector.

We consider now the possibility of stress increments da?j which satisfy all given conditions
on the do;;, excepting that the former is not necessarily consistent with the current rate of
strain hardening. Virtual work for the doy; in the strain field de;; is

dW® = (dE° — dW) + dK°
where

ij

dE® = % f (do¥de,)dvV
| 4

and dK° > 0 is the corresponding kinetic energy. In the absence of significant disturbing
forces the transition do?j — do;; in stress space is stable, and the reverse transition unstable
(or neutral) if (dK — dK°®) > 0. That is if (dE® — dE) = 0, or

fv(da?j — do)de;;dV > 0. (6)
Equation (5) and inequality (6) are the necessary and sufficient conditions for a stable

bifurcation of the stress path. At the instant of bifurcation the equality in equation (5) is
just satisfied; this will be taken to be one criterion for the onset of necking.
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The de;; will be derived from a positive, homogeneous, invariant, potential function
F(s;;) forming a convex surface enclosing the origin in stress space. Thus

oF
P ——— 7
de;; = di P (7)
where dA is a positive scalar factor, and
oF
%o =F (3)

ij
O'ijdeij = Fdi > 0
where[5]
di. = +(dey; de;;)'*[(0F |00 ) (OF /00 k)2, ®

The resultant plastic strain increment is then directed along the outward normal to the
potential surface. The yield function & will be taken to coincide with the plastic potential and
dA will be taken to be a suitable definition of generalised plastic strain increment de. Thus

G=F, and de=di (10)

and the work condition of equation (1) is automatically satisfied.
We consider the possibility of necking at a cross-section across which the stresses are
uniformly distributed. Then, using equation[1] the necking criterion (6) may be written[2]

1_ldo 1ds (11)

Here da/de is the current rate of strain-hardening and Z is the critical value of the subtangent
to the strain-hardening curve. The latter may be evaluated as follows:
Consider the stresses ¢,4 on areas 4,to be related to loads T, by

T, =A4,0,. (12)

(no sum over a, f)
Then, making use of the following identities from equations (1), (7) and (10)
dé®  OF doy

dec ooy, de
and
doy,  doy,
Br _ s 5 5
de  de M

where J,, is the Kronecker delta, together with equation (7) and differentiation of equation
(12), we find

1] 1 o7, 0.5 0A, | [ OF OF
Z 1 == ___Lﬂ__a_ﬂ__“][___s s ]
6[14“ aeu Ad 6eij aO',j adkl ka T16 (13)

We consider here the von Mises[6] plastic potential F? = 1C; 100k, together with
Hill’s assumptions for the orthotropic plastic material[4]. The conditions that must then be
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satisfied by the anisotropic coefficients are discussed elsewhere[2, 4, 5] but may be restated
briefly as follows:

Cijk! = Cjiki = ka =C; Jiltk
Ciz3 =Ciapy =" =0
and
Cii222 = = HCiay + Caz2z — Ci333),
For simplicity, we shall set

F= "‘Cilzz,(G+H)EC11119N=C1212’ e

where F, G, H, L, M, N are proportional to the corresponding quantities defined by Hill.
In particular, for plastic isotropy we would have F =1, ¥ = 3, and so on.
Thus, use of equations (7)-(10) leads to the folowing results:
Flow rule:
2(g/de)de,, = H(oy; — 03,) + G(oy, — 033)
= ¢y, say (14)
2(&/dé)d€12 = N(le .
Yield criterion:

& = +{3l(G + H)oy; — 02,001, — 0633) + - + 2Nat, + - 2 15)
Generalised plastic strain increment:
de = + ()~ (2/3de; de;)'* (16)
where
Y2 = + 16{[(G + H)? + G* + H*J(0,,/6)* + -+ —2[H(F + G + 2H) — FG]
(011/6)(02,/8) + 2N*(0,,/6)* + -}, an

Necking condition:

L T, 04, 1
Z‘*=(463)“{(———’-‘«~9—’—3 , )q&l +(--§T—“»fﬂa’4 )qf:z Hoe (18)

+( 1 5T22 Tr2 @AZ)

I 5T12 Gya 5A2)
————i 22 NG, 2 4 -,
o (A dey A, Ceyp o F }

We have thus justified our previous assumption[2] that the principle of maximum plastic
work is just violated at the onset of necking. The additional criterion of equation (5) allows
us to establish whether certain loads or pressures will be a maximum of necking; this
replaces previous arbitrary assumptions. Finally, the use of an invariant form of the
generalised plastic strain increment should allow better agreement with experiment.

EXAMPLE

We consider the necking failure of a long thin tube of length /, radius r < /, wall thickness
t < r, subjected to a uniform internal pressure p. The corresponding strain increments are:
dr dl dr
deyy = —; deyy = —; des, =0
r

/
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The first necking condition, equation (5) gives
dW = (nr*dl + 2nrldr) dp =0
or dp=0
and the pressure is a maximum at the onset of necking.
The second necking condition determined by equations (11) and (18) may be evaluated
as follows:
Circumferential and axial stresses are defined by the loads and areas
Tll =2rl[) Al =21t
T,, =nr’p A, =2nrt
T33 = 0.
Thus

_1 _pr ~0
‘722—5011 —z—t"o'ss— .

The corresponding non-zero rates of change of loads and areas are

1 dTyy, 10T, 1 0Ty,
Ay deyy Ay Deyy A, ey

The yield criterion, equation (15) becomes
(611/3) =(®)V*(4G + H+ F)™ 12
and the corresponding flow rule, equation (14) gives
¢, =10,,(2G + H), ¢, =40,(F— H).

The corresponding value of the critical subtangent z to the generalised strain-hardening curve
is

z=Q)"*4G + H + F)*?[42 G + H)* + 5(H — F)*]" .

In particular, for isotropic material, F=G = H =1, and z = (3)" /2.
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